激光写光电子学进展

非铅金属卤化物闪烁体材料与薄膜成像器件 研究进展(特邀)

林俊哲,郭丹*,翟天瑞** 北京工业大学理学部,北京 100124

摘要 高能射线探测成像技术在高能物理研究、医疗影像和工业探测等领域具有重要应用。非铅金属卤化物具有毒性低、稳定性良好、发光效率高、Stokes位移大的优点,在X射线间接探测领域表现出重要的应用潜力。本文综述了近年来 非铅金属卤化物闪烁体及薄膜成像器件的研究进展,首先介绍了材料组分与发光机理,然后列举了与闪烁体性能相关的 关键参数,概述了单晶、粉末与纳米晶材料合成方法,阐述了近些年研究工作中关于提高成像器件分辨率的新颖思路,重 点讨论了复合薄膜、陶瓷玻璃、结构化闪烁体等形式的新型闪烁体成像器件。最后,对目前闪烁体探测成像面对的挑战 和潜在解决方案进行了总结与展望。

关键词 非铅金属卤化物;闪烁体;成像;薄膜;发光 中图分类号 O434.1 **文献标志码** A

DOI: 10.3788/LOP232120

Research Progress in Lead-Free Metal Halide Scintillator Materials and Imaging Devices (Invited)

Lin Junzhe, Guo Dan^{*}, Zhai Tianrui^{**}

Department of Science, Beijing University of Technology, Beijing 100124, China

Abstract High-energy radiation detection and imaging technology has important applications in high-energy physics research, medical imaging, industrial detection, and other fields. Lead-free metal halides have many advantages, such as low toxicity, good stability, high light yield, and large stokes shift; they exhibit excellent potential in indirect X-ray detection. The latest research progress of lead-free metal halide scintillators and imaging devices is reviewed herein. First, the material composition and luminescence mechanism are introduced. The key parameters of scintillator performance are listed. The synthesis methods of single crystal, powder, and nanocrystal are summarized. Some recent novel ideas about improving the resolution of imaging devices are also described. We focus on the new-type scintillator imaging devices, including composite film, ceramic, glass, and structured scintillators. Finally, we have summarized the challenges and potential problems of scintillator imaging detectors and provided some suggestions.

Key words lead-free metal halide; scintillators; imaging; film; luminescence

1引言

高能射线探测在高能物理研究、医疗影像、无损检测 等领域具有重要应用^[14]。一般低能量(<10 keV)的高能 射线可用于活体生物监测及环境监测,10~100 keV 的可 用于医疗成像(CT),100 keV 以上的可用于安全检查,而 更高能量的高能射线可用于肿瘤治疗。根据不同的探测 原理,高能射线探测可分为直接探测和间接探测两种。 直接探测是指高能辐射被半导体吸收,激发出电子-空穴 对,载流子在电场作用下定向漂移被电极收集。这种探测手段可以有效减少散射效应,并简化转换过程,获得更高的分辨率和更好动态成像效果^[5]。同时直接探测在构建器件时无需利用光电二极管将可见光转化为电信号,更加紧凑、高效和小型化。面对大面积的钙钛矿探测器与TFT或CMOS阵列集成难度高的问题,近年来像素阵列探测器在国内得到迅速发展^[6],表现出了比单像素和少像素阵列探测器更好的应用性,但是由于需要兼顾电容和像素大小,在器件设计方面具有高的要求,因此实现

收稿日期: 2023-09-14; 修回日期: 2023-12-07; 录用日期: 2023-12-11; 网络首发日期: 2023-12-21

基金项目: 国家自然科学基金(52203252)

通信作者: ^{*d}guo@bjut.edu.cn; ^{**}trzhai@bjut.edu.cn

高空间分辨率、高灵敏度和低成像剂量的直接面阵探测器仍然面临重要挑战。间接探测是指闪烁体材料吸收高能辐射转换为可见光信号,再通过光电二极管阵列等结构转化为电信号,最后通过电荷采集系统后输出数字信号图像。间接探测具有成本更低、灵活性和兼容性更好的优点,在行业实际应用中更容易实现。

闪烁体具有将高能射线电离辐射转变为(近)可见 光信号的能力,是间接高能探测器件中核心的材料,目 前市场上应用的传统无机闪烁体材料,如Lu₃Al₅O₁₂: Ce、CsI(Tl)、Bi₄Ge₃O₁₂(BGO)、Gd₂O₂S(GOS)、CdWO₄, 制备时通常需要高温和高真空的条件^[7],存在工艺复 杂、合成条件苛刻、光产率较低,以及难以实现柔性等问 题^[8],在一定程度上限制了闪烁体材料的发展和应用。

金属卤化物材料,由于具有能量转换效率高、波长 和响应时间可调、制备成本低的优点,引起了极大关 注。2018年,刘小钢教授团队^[9]首次利用铅基钙钛矿

第 61 卷第 3 期/2024 年 2 月/激光与光电子学进展

CsPbX₃作为闪烁体材料,展示了优异的闪烁体性能, 但是仍存在辐射稳定性不理想、不可避免的自吸收等 问题,大大降低了光输出效率,且铅是一种有毒元素。 这些缺点是影响卤化物钙钛矿闪烁体商业化和大规模 应用的重要难题。为了解决这些问题,发展稳定、高光 产率、具有大Stokes位移的非铅金属卤化物闪烁体材 料受到了研究人员的青睐。此外,为了提高成像分辨 率,器件中闪烁体活性层的结构化研究受到极大关注。

本文综述了近年来基于非铅金属卤化物的闪烁体 材料与成像器件最新进展,如图1所示。从金属卤化 物闪烁体材料的组分与发光机理出发,介绍了闪烁体 性能的几项重要参数,而后分析了材料制备与器件结 构,汇总对比了近五年相关研究进展,重点讨论了新型 薄膜闪烁体器件活性层:柔性复合薄膜、透明固体介质 (陶瓷、玻璃)和结构化薄膜。最后展望了闪烁体的机 遇与挑战及未来可能的发展方向。

图1 钙钛矿闪烁体的材料、制备、参数、发光机理及应用综述[10]

Fig. 1 Review of materials, synthesis, parameter, luminescence mechanism, and application of lead-free metal halide scintillator^[10]

2 发光机理

非铅金属卤化物材料通常由A位阳离子、B位金 属元素、X位阴离子共同组成。常用的B位金属元素 有Mn、Cu、Zr、Sn、Sb等,占据多面体结构中心组成晶 体结构骨架,是决定材料性质的主要部分。A位阳离 子可间隔多面体结构,主要起稳定钙钛矿结构的作用。 X位阴离子通常为卤素元素,如Cl、Br、I等。三者共同 作用决定了材料所呈现的光致发光产率、光致发光寿 命、Stokes位移、电子结构带隙等特性。

高能射线与闪烁体物质相互作用主要考虑3个机

制:光电吸收、康普顿散射、正负电子对的形成^[11]。3种 机制的强度取决于高能射线的入射能量。在高能射线 入射能量高于几百 keV 时,康普顿散射占据主导地位, 在这种情况下,入射的高能光子只转移一小部分能量, 其余的能量被外层电子散射;若入射能量高于 1.02 MeV,可发生正负电子对的形成。而闪烁体的发 光机理通常考虑在入射能量低于几百 keV 的高能射线 辐照下,主要通过光电吸收与闪烁体的晶格原子相互 作用发射光子。

闪烁体的光电吸收主要发生3个过程:1)吸收及倍 增过程。原子电离,形成空穴和初级电子。随后通过非

第 61 卷第 3 期/2024 年 2 月/激光与光电子学进展

辐射衰变和电子散射等复杂过程使电子与空穴数量倍 增。2)能量载体输运过程。辐射产生的电子和空穴相 互作用或重新组合转移到发光中心前,许多电子和空穴 会首先经历一个 10^{-12} ~ 10^{-8} s的迁移过程。这个过程 中,闪烁体材料的缺陷态十分重要,可能会导致该阶段 产生非辐射复合及激子复合发光的延迟,这些缺陷需要 通过改善晶体生长过程或闪烁材料的表面性质来有效 地调控。3)发射过程。发射过程是闪烁体发射光子的 最后阶段,辐射光子发射可以通过电子和空穴的复合或 电子与发光离子的相互作用发生。无机闪烁体的整体 转换效率由入射粒子能量产生的光子数 $N_{\rm ph}$ 决定: $N_{\rm ph}$ = $N_{ch}SQ=(E_{\rm incident}/E_{ch})SQ=(E_{\rm incident}/\betaE_{g})SQ$ 。其中, N_{eh} 、 S、Q分别表示倍增阶段产生的电子空穴对数量、能量载 流子激发效率和发光中心的量子效率, $E_{\rm incident}$ 和产生热化电子-空穴对所需的能 量,E_g表示材料带隙,β为2~3之间的比例系数。

闪烁体材料的发光机理主要有激子复合发光、离 子发光与热活化延迟发光等3种。Bi、Cu、Zr、Sn基金 属卤化物大多通过激子复合辐射光子,在该过程中容 易发生电子-声子耦合从而形成自陷激子(STE),最后 以自陷激子复合的形式发光。电子-声子耦合引起晶格 畸变,导致电子和空穴的空间分离,因此,载流子重组过 程受到空间制约,使得STE相较于自由激子复合表现 出更长的激子寿命,如图2(a)所示。浙江大学杨旸教 授课题组^[12]利用STE机制解释双钙钛矿材料 Cs₂Ag_{0.6}Na_{0.4}In_{0.85}Bi_{0.15}Cl₆的辐射发光过程:辐射能量通 过光电效应和非弹性康普顿散射被双钙钛矿的重原子 吸收,产生大量热电子,然后这些电子在超快的时间尺 度上热活化并被发光中心捕获,最后通过自陷激子复 合辐射光子。

图2 非铅金属卤化物发光机理示意图。(a)STE,电子-声子耦合引起晶格畸变形成自陷激子,自陷激子复合发光^[12];(b)离子发光,低能载流子通过能量迁移传递到Mn²⁺的发光中心,通过d-d跃迁发光^[13];(c)STE与TADF,高能射线照射下产生单、三线态激子,通过系间窜越与反系间窜越相互转化,以自陷激子复合的形式发光^[16]

Fig. 2 Schematic diagrams of luminescence mechanism of lead-free metal halides. (a) STE, the coupling of electron-phonon causes lattice distortion to form self-trapping excitons, and self-trapping excitons recombine to emit photons^[12]; (b) ionoluminescence, low-energy carriers are transferred to the luminescent center of Mn²⁺ by energy migration and emit photons by d-d transition^[13]; (c) STE and TADF, singlet and triplet exciton states are produced under the irradiation of high-energy rays, which are transformed into each other through intersystem crossing and reverse intersystem crossing, and emit photons in the form of self-trapping exciton recombination^[16]

Mn 基卤化物钙钛矿或掺杂 Mn 钙钛矿材料具有 典型的离子发光特征:光子吸收倍增过程产生电子和 空穴,会通过能量迁移传递到Mn²⁺的发光中心,通过 d-d跃迁实现发光。其中,由于晶体场的不同,不同配 位数的 Mn²⁺表现出不同发光波长。具有一维结构的 AMnX₃卤化物钙钛矿,6个卤素离子包围1个Mn²⁺,形 成面共享的八面体结构,该方向上较小的Mn-Mn间 距,促进Mn²⁺之间能量传递,发出橘红色光。对于零 维Mn基钙钛矿 A_2MnX_4 (A 通常为有机配体), Mn^{2+} 被 4个卤素离子包围,形成分立的四面体单元结构。Mn-Mn距离较大时,跃迁由独立的Mn²⁺主导,表现为绿色 发射^[13]。此外, Mn 掺杂的钙钛矿可以同时出现离子 发光与激子发光,如图2(b)所示,Shao等^[14]报道了 BA₂PbBr₄:Mn(Ⅱ)的闪烁体材料,发射峰位于440 nm (蓝色)与610 nm(红色)。其发光机理为钙钛矿中的 重原子(Z_{Pb}>Z_{Br}>Z_{Mn})通过光电吸收与入射X射线相 互作用,产生高能电子与二次电子,然后高能载流子被 热弛豫到带边,产生的低能载流子进入两个竞争性通 道:1)带边本征自由激子发射:2)通过能量迁移传递到 Mn(Ⅱ),发生⁴T_{1g}⁻⁶A_{1g}自旋禁阻跃迁。通过改变Mn (Ⅱ)掺杂浓度还能实现发光颜色从深蓝、粉红、浅橙到 金黄色的调控,器件的光产率为85000 photons/MeV, 检测极限为16 nGy/s,空间分辨率为10.7 lp·mm⁻¹。

热活化延迟荧光机制(TADF)通常应用于有机发 光材料领域中,2021年Wang等^[15]发现,和常规紫外可 见激发不同,X射线照射下材料产生了大量的三线态激 子且电离激发的模式远远强于直接激发,这种现象与 电致激发更加接近。有机闪烁体材料TADF发光机制 斯托克斯位移更大,自吸收小且内转换效率高,但是有 机材料对于X射线的吸收较弱,曾有学者设计并合成了 一系列含卤素原子的有机材料体系,利用重卤素原子 促进有机闪烁体材料对X射线的吸收提高探测性能。

而部分无机金属卤化物材料同时具备以上发光机制的特点,Zhang等^[16]报道了Zr基钙钛矿Cs₂ZrCl₆闪烁体材料的发光机理,Cs₂ZrCl₆的重原子与X射线相互作用产生高能电子,高能电子迅速热活化产生二次电子,最终弛豫到带边。考虑到Cs₂ZrCl₆的软晶格结构容易发生明显的结构畸变,故在X射线照射下发生电子-声子的耦合作用,形成了自陷激子。随着温度不断升高,Cs₂ZrCl₆由三重态(T₁)主导的发射逐渐通过反系间窜越(RISC)变为单重态(S₁),导致发光寿命与发射波长变化,这一趋势符合Leitl等^[17]提出的热活化延迟荧光机制(TADF),PL寿命与温度的函数关系可以用下述发射模型^[18-19]拟合:

$$\tau_{\rm ave} = \frac{3 + \exp\left(-\frac{\Delta E}{k_{\rm B}T}\right)}{3/\tau_{\rm T} + 1/\tau_{\rm s} \times \exp\left(-\frac{\Delta E}{k_{\rm B}T}\right)}, \qquad (1)$$

式中: τ_s 和 τ_T 分别为S₁和T₁态的拟合衰变时间; ΔE 为

 S_1 和 T_1 态的带隙。式(1)说明温度对 PL 效率和寿命 具有重要影响。

3 闪烁体性能参数

常见用于评价闪烁体探测性能的参数有:辐射发 光波长、吸收系数、空间分辨率、检测极限、余辉效应及 光产率。光致发光条件下金属卤化物钙钛矿呈现出的 特性与高能射线辐照下呈现出的特性相关联:材料的 Stokes位移影响闪烁体的自吸收现象;材料的带隙值 影响闪烁体的辐射波长与光产率;材料的荧光寿命又 会对闪烁体的响应时间或余辉效应有所影响。

3.1 辐射发光

辐射发光(RL)是指闪烁体在高能射线的辐射激 发下发射出可见光。一般情况,RL的强度在一定范围 内随着高能射线剂量线性增加。对钙钛矿材料而言, 光致发光波长与激发态寿命一般受发光机理、晶格结 构、能带间隙与离子掺杂等因素影响。如Mn基钙钛 矿中, Mn²⁺的d-d轨道之间为自旋禁阻跃迁, 因此其荧 光寿命可达百微秒。而基于自由激子复合发光或自陷 激子复合发光的金属卤化物闪烁体材料,其发射波段 往往取决于B位元素与X位卤素元素的轨道杂化,寿 命在纳秒至微秒量级。Xu等^[20]通过掺杂策略调控了 闪烁体 Cs₂CdBr₂Cl₂:5%Mn²⁺的辐射波长,Mn的掺杂 提供了额外的激子复合跃迁通道,因而在593 nm 处实 现了高光产率发射,寿命为70.74 µs,如图3(a)~(c) 所示。Lian等^[21]研究了Cs₃Cu₂X₅纳米晶的卤素离子对 发光波长的影响,与卤化铅钙钛矿纳米晶相反,随着卤 化物组成从氯化物变为溴化物和碘化物,其PL峰位逐 渐红移,如图3(d)~(f)所示。这可能是因为小的卤素 元素引起了更大的晶格畸变,导致带隙产生较大变化。 基于STE发射的Cs₃Cu₂X₅纳米晶,受卤化物影响平均 寿命范围为1.92~95.79 µs。

3.2 吸收系数

吸收系数是反映探测材料阻挡高能射线能力的重 要参数,材料的吸收系数越大,表明对X射线的阻挡能 力越强^[22]。这项参数取决于材料的有效原子序数*Z*_{eff}、 密度ρ、X射线光子能量*E*,以及原子质量*A*^[23]:

$$C = (\rho Z_{\text{eff}}) / (AE^3)_{\circ} \tag{2}$$

选用无机阳离子(如Cs、Rb等元素)的闪烁体是 因为其有效原子序数更大,更有利于材料对高能射线 的吸收。

3.3 空间分辨率

空间分辨率表征辨别成像细节以及清晰度的能力^[24]。在高能射线成像领域,通常利用线对标准卡或取调制传递函数(MTF)为0.2时对应的分辨率数值 来表征该参数,这是肉眼可识别的最小极限。为了提高非铅金属卤化物闪烁体器件的空间分辨率,研究人员致力于增加光子的收集/利用效率,减小光散射,抑

图 3 辐射发光波长的调控。(a)不同 Mn (II)掺杂量 Cs₂CdBr₂Cl₂的 PL 光谱;(b) Cs₂CdBr₂Cl₂的自陷激子荧光衰减曲线; (c) Cs₂CdBr₂Cl₂: Mn²⁺的多通道发光机理^[20];(d) Cs₃Cu₂I₅的 HRTEM 图像;(e) Cs₃Cu₂X₅纳米晶的荧光衰减曲线;(f) Cs₃Cu₂X₅纳 米晶归一化吸收和 PL 光谱及对应的紫外光下溶液的荧光照片^[21]

Fig. 3 Modulation of radioluminescence wavelength. (a) PL spectra of $Cs_2CdBr_2Cl_2$ with different Mn ([I]) doping levels; (b) PL decay curve of $Cs_2CdBr_2Cl_2$; (c) emission mechanism diagram of $Cs_2CdBr_2Cl_2$: $Mn^{2+[20]}$; (d) HRTEM images with the $Cs_3Cu_2I_5$ nanocrystals; (e) TRPL decay curve of the $Cs_3Cu_2X_5$ nanocrystals; (f) normalized absorption and PL spectra of $Cs_3Cu_2X_5$ nanocrystals^[21]

制信号串扰。

3.4 检测极限

检测极限决定了高能射线探测器可检测出的最低 剂量。International Union of Pure and Applied Chemistry (IUPAC)将检测极限定义为可产生三倍噪声信号的 等效剂量(即信噪比为3时对应的最小剂量^[25])。在X 射线探测器中,噪声通常包括热噪声、散粒噪声及1/f 噪声。1/f噪声取决于材料的晶粒边界与缺陷,故通过 优化晶体质量,可有效消除1/f噪声^[26]。

3.5 余辉效应

余辉是指经高能射线辐照后,材料特定时长内呈现出的辐射发光强度。通常,CT成像对余辉效应的要求是在X射线照射后,3ms的时长内辐射发光强度衰减至0.1%^[27]。超短余辉有利于快速响应的实时动态X射线成像^[28-29],此类材料的发光寿命一般在100ms以下^[30]。例如:Cheng等^[31]报道的Cs₃Cu₂I₅闪烁衰减曲线快分量为51ms,其超短余辉效应在10ms时衰减至0.03%。然而无铅钙钛矿的寿命相对较长,同铅基钙钛矿的15ms竞争仍有差距^[32]。若余辉效应时间过长,会与前一次曝光信号重叠,导致成像信息不准确。但超长余辉材料在高分辨3D高能射线成像领域表现出重要的应用潜力,福州大学杨黄浩、陈秋水教授课题组^[33]利用液相合成方法制备了长余辉稀土氟化物纳米晶闪

烁体 NaLuF₄: Tb(15 mol%)@NaYF₄,通过量子力学计 算提出并验证了 X 射线诱导的长余辉发光机理:Lu原 子吸收 X射线通过光电效应产生高能电子,同时 X 射线 碰撞氟离子形成 Frenkel 缺陷,位移距离长的氟离子产 生深陷阱态,电子被深陷阱态捕获后需要额外的能量 才能迁移到 Tb发光中心。因此该材料呈现出可持续 30天的长余辉发光,可用于制备柔性 X 射线 3D 成像器 件,实现了高度弯曲物体的三维成像,如图 4 所示^[33]。

3.6 光产率

作为评价闪烁体材料性能的一个重要参数,光产 率反映了闪烁体将高能射线能量转化为光子的能力。 其表达式为

$$R_{\text{lightyield}} = 10^6 \times SQ / (\beta E_g), \qquad (3)$$

式中:S是电子-空穴对到光学发射中心的输运效率;Q 是材料发光效率;β是计算常数,通常取2.5;E_g是对应 带隙能量,单位通常为photons/MeV。光产率也可以 通过线性响应曲线估算得到,利用不同材料光产率与 线性响应曲线斜率比值近似相等,即可估算待测材料 的光产率^[34]。此外,材料内部存在自吸收、非辐射复合 及散射损耗,实际应用中光产率会降低^[35]。因此,选用 Stokes位移大的闪烁体材料,有助于抑制自吸收损耗。 为提高光提取效率,实际间接探测应用中,通常会在器 件中采用反射涂层避免光损失,在闪烁体及光电探测

图4 金属氟化物长余辉纳米晶闪烁体用于X射线3D成像^[33]。(a)Tb³⁺掺杂NaLuF₄纳米晶长余辉发光机理;(b)在停止X射线 (50 kV)0.5~168 h后纳米晶的辐射发光光谱;(c)NaLuF₄:Tb(15 mol%)@NaYF₄纳米晶体分散在1 mL环己烷中的余辉照 片;(d)纳米晶闪烁体集成的柔性探测器3D成像原理图

Fig. 4 Metal fluoride longer afterglow nanocrystals scintillator for X-ray 3D imaging^[33]. (a) Proposed mechanism of long-lived persistent radioluminescence of Tb³⁺-doped NaLuF₄ nanocrystals; (b) radioluminescence emission spectra of the core-shell nanocrystals, recorded after cessation of X-rays (50 kV) for 0.5–168 h; (c) afterglow photographs of NaLuF₄ : Tb (15 mol%) (@NaYF₄ nanocrystals dispersed in 1 mL cyclohexane; (d) schematic diagram of 3D imaging using a flexible detector integrated with nanocrystalline scintillators

器之间涂抹光耦合胶提高光提取效率。材料的透光率 与散射损耗会影响器件的光产率数值,光学透明度较 差通常是因为气孔和晶界上的光散射,这导致器件的 能量利用率低,因而透光率差会一定程度上降低光产 率、检测极限、空间分辨率等。在高温、真空的实验条 件下制备质量高、晶界少、缺陷态密度低的闪烁体器件 可明显提高透光率和光产率。

表1列举了近五年非铅金属卤化物闪烁体材料,主要包括Mn、Cu、Zr、Sn基卤化物闪烁体及其晶体形态、制备方法、发射波长、荧光寿命、光产率、空间分辨率、检测极限等参数。对于Mn基卤化物闪烁体,通常表现为Mn(Ⅱ)的d轨道⁴T₁→⁶A₁跃迁。卤素离子与Mn(Ⅱ)的配位结构影响了Mn(Ⅱ)的能级劈裂及最终发光波长,具有共面八面体结构的1D钙钛矿一般表现为红光发射,而四面体结构分立的0D钙钛矿一般表现为绿光发射。在有机无机杂化Mn基卤化物钙钛矿中,通常采用大体积有机阳离子提供更大Mn-Mn距离,减小发光离子耦合导致的激发态能量淬灭,进而提高其光产率。

但是, Mn 基卤化物的发光是自旋禁阻跃迁,发光寿命 可达数百微秒,不利于动态X射线成像的应用。为了兼 顾辐射光产率和响应时间,元素组成的选择和晶体结 构的设计尤为重要。铜是一种含量丰富、成本低且对 环境友好的元素,低维Cu基卤化物表现出高的激子结 合能,在闪烁体领域展示了优越的应用潜力。Cu基卤 化物闪烁体的光学性质主要受到激发态重组的影响, 在光激发下,Cu(I)的3d¹⁰电子轨道变为3d⁹电子轨道 形状,电子轨道的构型变化引起激发态结构的重组。 此外强的电子-声子耦合效应使其表现为STE发射,表 现出大的 Stokes 位移、高的 PLQY 和适宜的荧光寿命。 而其他B位元素钙钛矿,锡(Ⅱ)基卤化物闪烁体的环境 稳定性相对较差,双钙钛矿和Ag(I)基卤化物闪烁体 的光产率相对较低^[36-38],相较而言,近期报道的Zr基卤 化物由于强的光声耦合作用,表现出大的Stokes位移、 高PLQY的STE发射^[39],可与聚合物形成稳定的闪烁 体柔性薄膜,制备工艺简单,具有大面积柔性和较高稳 定性。离子掺杂策略经常用于提高光产率,He等^[40]报

第 61 卷第 3 期/2024 年 2 月/激光与光电子学进展

道了一种将Cs₂AgI₃的PLQY由不到1%大幅提升到 了载流子重组概率 71%的适量Cu(I)掺杂策略,根据密度泛函理论,部分 的STE发光。因此 Ag位点被Cu取代,在价带顶增加了部分浅能态,增大 提升非铅卤化物闪烁 表1 近五年非铅金属卤化物闪烁体材料性能参数

了载流子重组概率,并实现了具有192.8 ns荧光寿命的STE发光。因此,探究更丰富的离子掺杂策略从而提升非铅卤化物闪烁体性能具有重要意义。

Table 1 Performance parameters of free-lead metal halide scintillators in recent five years

Scintillator	Synthesis method	Emission /nm	PL decay time or afterglow time /ns	Light yield /(photons/ MeV)	Detection limit / (nGy/s)	Spatial resolution /(lp/mm)	Radiation stability	Reference
(C ₃₈ H ₃₄ P ₂)MnBr ₄ SCs/PDMS	Antisolvent/ mold	517	318000	66256	461.1	1.5 (0.322 mm)	4 h@0. 0894 mGy/s	[62]
$(ETP)_2MnBr_4$ transparent wafer	Melt-quenching	520	295000	35000	103.0	13.4 (MTF is 0.2)		[60]
CsMnCl ₃ :1%Pb NCs/PMMA	Hot-injection	660	490000	2500		4.3	2 h@18 mGy/s	[42]
(TBA) ₂ MnBr ₄ SCs/PMMA	Solvent evaporation/ mold	512	445000	68000	63.3	15.4 (MTF is 0.2)		[52]
TPP ₂ MnBr ₄ wafer	Seed-crystal- induced cold sintering	520	265000/ 0.5%@3 ms	78000	8.8	15.7 (MTF is 0.2)		[53]
$(C_8H_{20}N)_2MnBr_4$ SCs	Solution growth	515	442520/1%@ 2.06 ms	24400	24.2	5	6 h@1.34 mGy/s	[13]
$C_4H_{12}NMnCl_3\ SCs$	Solution growth	635	758950/1%@ 3.43 ms	50500	36.9	5	6 h@1.34 mGy/s	[13]
BA₂PbBr₄∶Mn (∏)/PMMA	Solution- processing/ blade-coating	440,610	727830	85000	16.0	10.7 (MTF is 0.2)	10 h@ 0. 2763 mGy/s	[14]
$(HTPP)_2MnBr_4$ glass	Low- temperature melt-quenching	519	190400	8600	185.0	10.0		[54]
(TBA)CuBr ₂ SCs/PVDF	Solvent evaporation/ spin-coating	498	232050	24134		3.0		[63]
Rb₂CuBr₃/ polystyrene	Anti-solvent/ mold	400	61040	91056		1.7 (0.29 mm)		[43]
$Rb_2CuBr_3/films$	Slow cooling	385	41400	91056	121.5			[69]
$Cs_3Cu_2I_5/PDMS$	Ball milling/ drip coating	445	960	123736		6.8 (MTF is 0.2)	1 h@0. 1838 mGy/s	[46]
C ₉ H ₂₀ NCuBrI/ PDMS	Antisolvent/ physical press	464,630	2230, 2520	25000	40.4	5.6	0.5 h@ 0.0104 mGy/s	[64]
Cs ₃ Cu ₂ I ₅ / polydimethylsiloxa ne/PDMS	Anti-solvent/ spin-coating/ blade-coating	445	969	48800	48.6	17 (MTF is 0. 2)		[65]
Cs ₃ Cu ₂ Cl ₅ :2% K ⁺ NCs/ polystyrene	Hot-injection/ mold	530	107570		63.5	5.0		[66]
Cs ₃ Cu ₂ I ₅ NC films/glass	Hot-injection/ solution- deposited	445	1920	79279		1.5 (0.32 mm)		[21]

第 61 卷第 3 期/2024 年 2 月/激光与光电子学进展

表1(续)								
Scintillator	Synthesis method	Emission /nm	PL decay time or afterglow time /ns	Light yield /(photons/ MeV)	Detection limit / (nGy/s)	Spatial resolution /(lp/mm)	Radiation stability	Reference
Cs ₃ Cu ₂ I ₅ -AAO films	Hot-pressing	440	936	31700		10.4 (MTF is 0.2)		[56]
$(C_8H_{20}N)_2Cu_2Br_4$ wafer	Cold Pressing Sintering	468	56000	91300	52.1	9.54	6 h@0. 096 mGy/s	[34]
(18-crown-6) ₂ Na ₂ $(H_2O)_3Cu_4I_6$	Ball milling	536	1980	109000	59.4	24.8	1 h@2. 4 mGy/s	[57]
$(C_8H_{17}NH_3)_2SnBr_4/$ PMMA	Cooling/spin- coating	596	3340			2.5	0. 22 h@40 kV/0. 07 mA	[61]
$\begin{array}{c} Cs_{2}Ag_{0.6}Na_{0.4}In_{0.85}\\ Bi_{0.15}Cl_{6}\;SCs \end{array}$	Modified hydrothermal reaction	610	2800	39000	19.0	4.8 (MTF is 0.2)	50h@ 0.012mGy/s	[12]
Cs ₂ ZrCl ₆ /PDMS	Spin-coating	447	83550	49400	65.0	18.0	2 h@2. 52 mGy/s	[16]
$C_{50}H_{44}P_2SbC_{15}SCs$	Antisolvent precipitation	592	2670	44460	16.29	8.2		[48]
$\mathrm{Cs_2AgI_3}$ polycrystalline powders/PDMS	Modified antisolvent crystallization/ spin-coating	470	192.8	82900	77.8	16.2 (MTF is 0.2)	0. 33 h@ 0. 19 mGy/s	[40]
Cs ₂ CdBr ₂ Cl ₂ : 5%Mn ²⁺ SCs/ PDMS	Hydrothermal reaction/spin- coating	593	5040000 1% @34.64	64950	17.8	12.3	1 h@ 0. 0323 mGy/s	[20]
$Cu_4I_6(pr-ted)_2$ microcubes	Hot-injection	535	8000		22.0	20.0	2 h @ 2. 85 mGy/s	[41]
Cs₄EuBr₅ single crystal	Bridgman method	462	3720	78000				[49]
Cs_4EuI_6 single crystal	Bridgman method	470	3330	53000				[49]
Cs ₄ CaI ₆ :Eu single crystal	Bridgman method	474	2100	51800				[50]
Cs ₄ SrI ₆ :Eu single crystal	Bridgman method	474	1900	62300				[50]
$\begin{array}{c} Cs_{3}Cu_{2}I_{5}{:}Tl\ single\\ crystal \end{array}$	Bridgman method	500	304,839	51000				[70]
(PPN) ₂ SbCl ₅ single crystal	Antisolvent diffusion	635	4100	49000	191.4		2 h @ 0. 09 mGy/s	[67]
Cs₂NaTbCl₀ powder	Hydrothermal method	548	760000	46600				[68]

4 非铅金属卤化物闪烁体材料制备 方法

具有优异发光和光电性能的金属卤化物材料,一般以纳米晶、单晶和多晶粉末的状态存在,目前已发展 了多种制备工艺。表2展示了多种制备工艺的特点。

4.1 纳米晶

常见的非铅金属卤化物纳米晶的合成方法有热注 入法、室温配体辅助共沉淀法等。唐江教授团队^[21]通 过添加碘化铟辅助改良热注入法制备了非铅钙钛矿 Cs₃Cu₂I₅纳米晶,制备出的闪烁体薄膜具备优异的光产 率及空气稳定性,如图5(a)、(b)所示。Wang等^[41]利 用热注入法合成铜碘团簇微米晶闪烁体Cu₄I₆(pr-ted)₂, 如图5(c)~(e)所示,该闪烁体对X射线表现出高响应 性和耐辐射性,对环境湿度与温度表现出高稳定性。 Guan等^[42]采用改进的热注入法制备了全无机锰基钙 钛矿CsMnCl₃纳米晶,通过调节油酸与油胺配体的体 积比控制纳米晶的形貌与晶相,如图6(a)所示。热注

第 61 卷第 3 期/2024 年 2 月/激光与光电子学进展

表2	各种合成方法的特点	
表 2	各种合成方法的特点	

Table 2 Characteristics of various synthesis methods				
Synthesis method	Advantage	Disadvantage		
Hot-injection	High crystallinity and controlled size	Inert gas and high temperature		
Coprecipitation	Needless of high temperature	Impurity precipitation, and require purification		
Ball milling	Simple process without solvent	Poor optical property of product		
Solvent evaporation	Adjustable size and shape	Long synthesis period		
Anti-solvent	High crystal quality and fast synthesis	High solvent requirements		
Slow cooling	Large single crystals	Precise control of temperature		

图 5 高 PLQY、稳定的 Cs₃Cu₂I₅纳米晶与高稳定、耐辐射的团簇基微立方闪烁体。(a) Cs₃Cu₂I₅纳米晶的 TEM 图像^[21];(b) Cs₃Cu₂I₅ 纳米晶稳定的高 PLQY^[21];(c)~(e)均匀微米立方体形貌 Cu₄I₆(pr-ted)₂的 SEM 图像、水稳定性和辐照稳定性^[41]

Fig. 5 High PLQY, stable $Cs_3Cu_2I_5$ nanocrystals and highly stable, radiation-resistant cluster microcubes scintillator. (a) TEM image of $Cs_3Cu_2I_5$ nanocrystals^[21]; (b) PLQY stability of $Cs_3Cu_2I_5$ nanocrystals in ambient atmosphere^[21]; (c)–(e) SEM image, water stability, and X-ray tolerance of Cu_4I_6 (pr-ted)₂ microcubes^[41]

人法可以通过调节反应温度和时间,控制合成纳米晶的尺寸,然而,该方法通常需要高温及惰性气体的条件,不利于批量、低成本的制备。Han等^[43]采用配体辅助共沉淀法合成 Rb₂CuBr₃纳米晶,如图 6(b)所示。在制备前驱体溶液时加入了适量的次磷酸(HA),防止Cu(I)被氧化生成杂相。将前驱体溶液加入反溶剂中经离心干燥得到 Rb₂CuBr₃粉末,同时为保证粉末为纯相 Rb₂CuBr₃,需要将产物在封闭的黑暗环境中储存10天。相较于前一种方法,室温共沉淀法无需高温、

制备简单、成本低,工业应用前景好。

4.2 多晶粉末

用于制备闪烁体复合薄膜的钙钛矿粉末可以通过 共沉淀法、机械化学合成(球磨)等方法制备。图 6(c) 展示了共沉淀法合成粉末示意图,然而沉淀时通常会 伴随着杂质的析出过程,因此制备后需要洗涤干燥,这 使得工艺复杂化,不利于大规模生产,该方法属于溶液 合成法,但是有些原料不易溶解,影响前驱体溶液的质 量^[44]。相较于共沉淀法,机械化学合成法(例如球磨

图 6 非铅金属卤化物纳米晶、粉末、单晶的制备方法示意图。(a)热注入法合成 CsMnCl₃纳米晶^[42];(b) 配体辅助共沉淀法制备 Rb₂CuBr₃纳米晶^[43];(c)(d) 共沉淀法^[44]、机械化学合成法(球磨)^[46]制备粉末;(e)反溶剂蒸汽法^[48]、反向温度结晶法和溶剂 蒸发法^[13]制备单晶示意图

Fig. 6 The synthesis methods of single crystal, powder, and nanocrystal. (a) Synthesis of CsMnCl₃ nanocrystals by hot-injection method^[42]; (b) ligand-assisted reprecipitation (LARP) method for Rb₂CuBr₃nanocrystals^[43]; (c) (d) coprecipitation method^[44] and mechano-chemical synthesis (ball milling)^[46] for power; (e) schematic diagram of single crystal preparation by anti-solvent vapor method^[48], cooling-induced crystallization method, and solvent evaporation method^[13]

法)将原料按照适量比例充分接触研磨后可完成高质 量粉末的制备,同时可以忽视溶解度问题[图6(d)], 近些年广泛应用于多种有机和无机功能材料的制 备^[45]。例如,Li等^[46]采用常温球磨法将原料按化学计 量比装入球磨机中,该方法无需溶剂,球磨几分钟便可 直接制备高纯度Cs₃Cu₂I₅粉末。该方法高效便捷易于 实施,因而更适合大规模的制备,然而目标产物的光学 性能是否达到预期还有待探究。为实现金属卤化物钙 钛矿粉末的批量、低成本制备,最近 Yang 等[47]提出一 种盐酸辅助非铅卤化物钙钛矿粉末制备策略,该策略 实现了无高温、无压、环保、快速、低成本和高产率的高 效制备。该策略不需要将原材料溶解,将符合化学计 量比的原材料直接在少量浓盐酸中简单混合,利用浓 盐酸环境调控化学可逆反应朝着合成目标产物的方向 进行,这种粉末-粉末直接转化的策略打破了溶液法先 溶解再结晶生成钙钛矿的固有思路,实现了环保、快 速、低成本的高效制备。

4.3 单晶

对于钙钛矿单晶而言,其缺陷态密度低,散射损耗 小,透光性好,光吸收效率高,但是大面积制备仍然面 临挑战。金属卤化物单晶制备方法有反溶剂结晶法、 反向温度结晶法、溶剂蒸发结晶法、Bridgman法等,如 图 6(e)~(g)所示。Meng 等^[48]在制备 C₅₀H₄₄P₂SbCl₅ 单晶时用到了反溶剂蒸汽扩散法,在装有前驱体溶液 的小瓶放入装有乙醚的大瓶中,密封4天,得到钙钛 矿单晶。反向温度结晶法利用不同温度下溶质分子 的溶解度差异析出晶体,比反溶剂结晶法更简单、快 速。采用溶剂蒸发结晶法制备C4H12NMnC13单晶,该 方法利用前驱体溶液中的溶剂逐渐挥发,达到过饱和 度后形核、生长,逐渐析出晶体,可以通过调节温度、 浓度、溶剂挥发速率等控制产物形貌和大小。该方法 基于金属卤化物前驱体在各种溶剂中的溶解度不同 而生长单晶,反溶剂蒸汽在饱和前驱体溶液中的缓慢 扩散导致晶体缓慢析出,但该方法生长周期长。 Bridgman法加热多晶材料使其熔化,然后从种晶所在

第 61 卷第 3 期/2024 年 2 月/激光与光电子学进展

的末端缓慢冷却可生长不同类型的钙钛矿^[49-50]。相比 纳米晶或多晶粉末的制备,单晶合成需要的条件更加 苛刻、耗时更长,且难以实现批量制备,在制备方面仍 然存在诸多挑战。近期,清华大学Gao等^[51]基于Le Chatelier原理利用室温溶剂蒸发结晶法提出了一种 生长3D、2D、1D和0D的通用策略制备有机无机杂化 或全无机卤化物钙钛矿单晶,这种低成本、简单高效 的制备方法有助于钙钛矿单晶生产及相关应用领域 的发展。

5 闪烁体探测成像薄膜器件

为了制备高能射线探测成像器件,需要将闪烁体 材料制备成复合薄膜、陶瓷/玻璃或结构化薄膜的形 式。表3给出了不同种类的器件具备的特点。

表3 不同类型器件的优点和缺点

Γable 3 Advantages and disa	dvantages of different	kinds of a	devices
-----------------------------	------------------------	------------	---------

Device type	Advantage	Disadvantage
Composite film	Flexible and large-area preparation	Low absorption coefficient and high scattering loss
Tabletting	Simple process	Low transmittance and high scattering loss
Transparent solid medium	High transmittance and low scattering loss	Require vacuum and high temperature
Structured film	Strong light confinement	Complex processing

5.1 复合薄膜

复合薄膜具有柔性可拉伸,易大面积制备等优点, 通常将制备出的金属卤化物材料研磨成粉末,分散于 聚合物前体中形成悬浮介质,再利用滴涂、刮涂、旋涂 等工艺完成复合薄膜制备。Li等^[46]利用旋涂法制备 了Cs₃Cu₂I₅-PDMS柔性复合薄膜,该复合膜表现出优 异的空气稳定性,如图7(a)~(c)所示。同时,Ma等^[52] 报道了一种量子产率接近100%的零维锰基钙钛矿闪 烁体(TBA),MnBr₄,如图7(d)~(f)所示,光产率达 68000 photons/MeV,分辨率达15.4 lp·mm⁻¹,且室温 下储存90天PLQY无明显变化。混合(TBA)₂MnBr₄ 粉末、氯苯与PMMA并搅拌成混合前驱体溶液,倒入 石英容器自然成膜,工艺简洁,可实现低成本大面积制 备。Zhang等^[16]制备了Cs₂ZrCl₆闪烁体,与PDMS混合 制备复合薄膜闪烁屏,分辨率达到了18.0 lp·mm⁻¹,且 在较强力度的弯曲与拉伸下同样展示出稳定的成像能 力,如图7(g)~(i)所示。复合膜中聚合物的保护显著 提高了闪烁体材料的稳定性,但是,闪烁体材料含量在 薄膜的占比低且分布不均匀会导致复合薄膜对X射线 的吸收能力下降和不可避免的散射损耗,影响探测器 的检测极限和空间分辨率等成像性能。

5.2 透明固体介质(陶瓷、玻璃)

针对金属卤化物的研究主要集中在晶体材料上,包括多晶薄膜、纳米晶体和单晶,而对玻璃陶瓷类材料的研究相对较少。相较于多晶压片,玻璃陶瓷类金属卤化物闪烁体具有相对透明的外观,可有效降低光散射。但是,在制备此类材料时需要较高温度排除材料的空隙、气孔等缺陷,且要求材料的熔融温度要低于分解温度,并不是所有材料都满足这个条件。2022年,夏志国教授课题组^[53]提出一种晶种诱导冷烧结的工艺(SCSP)来解决上述问题,如图8(a)~(e)所示,SCSP工艺降低了陶瓷材料中残余孔隙的占比,而种晶诱导的取向生长降低了传播方向上的晶界密度,两者共同促成了高透明度、强闪烁体性能的陶瓷 TPP₂MnBr₄。

该陶瓷闪烁体具有 68% 的透明度(450~600 nm),光产 率为 78000 photons/MeV,检测极限为 8.8 nGy_{air}·s⁻¹,X 射线成像显示 15.7 lp·mm⁻¹的高空间分辨率,材料荧 光寿命为 265 μs,样品的亮度 3 ms 衰减至 0.5%,表现 出优异的循环可靠性、温度与环境稳定性。由于玻璃 具有较好透光性,闪烁体玻璃也吸引了研究人员的关 注。但是玻璃态的无序性会引起严重的非辐射复合, 导致 PLQY 降低,而具备更高 PLQY 的晶态将由于多 晶界导致低的透光性。为解决上述问题,Luo 等^[54]提 出了一种预合成低温熔淬的方法调控玻璃态、熔体态 与晶体态之间的转变过程[图 8(f)~(h)],研究发现熔 体玻璃内部有序程度介于熔体和晶体之间,表现出 78% 的透光率与 28.5% 的 PLQY。

5.3 结构化闪烁体薄膜

为提高探测成像器件的空间分辨率,研究人员提 出将闪烁体材料结构化的思路,通过设计材料的纳米 结构,利用波导效应控制光子的传输路径,从而提高器 件的光提取效率与空间分辨率。2021年, Tang 课题 组^[55]利用晶种筛选法直接制备CsCu₂I₃薄膜。该方法 通过变温调控晶种形成与生长过程,实现了1D钙钛矿 CsCu₂I₃的特定取向生长,形成了类似波导的晶体结构 阵列,有效改善了闪烁体薄膜的空间分辨率。同年,该 组又提出了一种将金属卤化物闪烁体 Cs₃Cu₂I₅通过热 压方法嵌入阳极氧化铝(AAO)模板的策略^[56],如 图 9(a)~(c)所示,纳米孔阵列结构的AAO模板提供了 光约束作用,有效限制了闪烁体发射光子的横向扩散, 减少了光子泄漏,最终达到了10.4 lp·mm⁻¹的空间分 辨率,该工作对提高闪烁体探测器件的成像分辨率具 有启发意义。Wang等^[57]选用一种可忽略自吸收和绿 光发射 PLQY 接近 100% 的金属卤化物(18-crown-6)。 $Na_{2}(H_{2}O)_{3}Cu_{4}I_{6}(CNCI)$ 作为闪烁体材料,该材料具有 超高的光产率(109000 photons/MeV)与低的检测极 限(59.4 nGy·s⁻¹),如图 9(d)所示。将材料填充到硅

- 图7 非铅金属卤化物闪烁体复合薄膜。(a)紫外光下 Cs₃Cu₂I₅-PDMS 柔性膜的形貌;(b)连续 X 射线照射下 RL 的稳定性; (c)Cs₃Cu₂I₅粉末和 Cs₅Cu₂I₅-PDMS 柔性薄膜 PLQY 的稳定性^[46];(d)弯曲(TBA)₂MnBr₄-PMMA 薄膜的照片;(e)归一化 PLQY 与弯曲次数的关系;(f) X 射线图像的调制传递函数与空间分辨率^[52];(g)Cs₂ZrCl₆-PDMS 柔性薄膜不同弯曲角度下柔 性电路板 X 射线图像;(h)X 射线成像系统示意图;(i)柔性薄膜的标准分辨率卡 X 射线成像图^[16]
- Fig. 7 Lead-free metal halide scintillator composite films. (a) The appearance of Cs₃Cu₂I₅-PDMS flexible film under UV light; (b) the RL stability under continuously X-ray illumination; (c) the stabilities of PLQY of Cs₃Cu₂I₅ powder and Cs₃Cu₂I₅-PDMS flexible film^[46]; (d) photographs of (TBA)₂MnBr₄-PMMA film; (e) normalized PLQY versus bending times; (f) modulation transfer functions (MTF) of an X-ray image^[52]; (g) X-ray images of Cs₂ZrCl₆-PDMS flexible films on flexible circuit boards; (h) schematic diagram of the X-ray imaging system; (i) X-ray imaging of Cs₂ZrCl₆-PDMS flexible films on standard resolution card^[16]

- 图8 通过陶瓷和玻璃闪烁体增大透光度和成像分辨率。(a)晶种诱导冷烧结(SCSP)制备工艺;(b)具有特定取向的陶瓷晶粒结构 示意图;(c)(d)晶种诱导冷烧结工艺(SCSP)、冷烧结工艺(CSP)、固态烧结(SS)工艺制备样品的透光率(厚度0.5 mm)及其 调制传递函数(MTF);(e)代表性闪烁体与TPP2MnBr4闪烁体空间分辨率的比较^[53];(f)线对卡的X射线成像,展示了较高分 辨率;(g)10 cm×10 cm(HTPP)₂MnBr₄闪烁体玻璃白光下照片;(h)[i][ii]环境光下胶囊与芯片的照片,[iii][iv]胶囊内弹簧 与芯片的X射线成像^[54]
- Fig. 8 Increasing transmittance and imaging resolution through ceramic and glass scintillators. (a) Fabrication process via the seed-crystal-induced cold sintering process; (b) no light scattering as light travels through homogeneous grain ceramics; (c)(d) light transmittance and modulation transfer functions of X-ray images obtained from SCSP, CSP, and SS; (e) comparison of spatial resolutions in representative scintillators and direct X-ray detectors^[53]; (f) X-ray imaging of a lead-made line pair card; (g) the photograph of a 10 cm×10 cm (HTPP)₂MnBr₄ glass; (h) [i], [ii] the photograph of a spring in a capsule and a chip under the ambient light, [iii], [iv] X-ray imaging of the spring and the chip^[54]

孔阵列中,降低了闪烁体的光散射、提高了光约束能力,将分辨率从CNCI-聚合薄膜的16.3 lp·mm⁻¹提升到24.8 lp·mm⁻¹,还探索了硅阵列的厚度和孔径对器件分辨率的影响。图9(e)~(g)展示了2023年Yi等^[58]提出的一种双锥形光纤阵列结构,该结构利用波导全反射原理,将光纤阵列间隙的闪烁体材料(CsPbBr₃)发射的光子有效耦合至光纤波导结构中。相较于圆柱形

光纤,双锥形光纤通过以下方式提高了光收集效率:1) 光子直接进入光纤的角度范围更大;2)闪烁体膜中原 本无法进入光纤的光子经双锥光纤多次反射后,其入 射角可回落至满足进入光纤的条件(蓝色箭头);3)光 子在传播过程中被重新吸收和重新发射,满足角度条 件的光子可进入光纤。这种多渠道收集光子的方式显 著提高了光纤结构对闪烁体材料的光收集效率,最后

- 图9 通过耦合微纳光学结构提高器件分辨率。(a)Cs₃Cu₂I₅-AAO复合薄膜的成像示意图;(b)(c)传统闪烁体和像素化闪烁体中光的传播示意图^[56];(d)通过硅孔阵列模板提高CNCI闪烁体的空间成像分辨率^[57];(e)~(g)双锥形光纤阵列结构、发光传播路径示意图及对集成电路的X射线成像^[58];(h)"光子晶体"纳米结构增强X射线闪烁^[59]
- Fig. 9 Improving device resolution through coupling micro-nano optical structures. (a) Imaging diagram of Cs₃Cu₂I₅-AAO composite film; (b) (c) schematic diagram of the light propagation path in the conventional scintillator and pixelated scintillator^[56]; (d) improving the spatial imaging resolution of CNCI scintillators through silicon hole array templates^[57]; (e)–(g) schematic diagram of biconical fiber array structure, emission propagation path, and X-ray imaging of integrated circuits^[58]; (h) "photonic crystal" nanostructures enhance X-ray scintillation^[59]

器件的空间分辨率提高到22 lp·mm⁻¹。Roques-Carmes等^[59]于2021年提出了增强闪烁体发射的理论 框架的纳米光子结构,如图9(h)所示,实验设计的"光 子晶体"周期纳米结构允许更多通道将平面波耦合到 高Q值的共振中,直接提高了闪烁体对泵浦源的吸收 进而增强闪烁。实验结果与理论预测相吻合,纳米结 构区域的信号强于无结构区域的信号约9.1倍。重要 的是,该理论框架的通用性决定了其具备广泛的应用 价值,如纳米光子结构闪烁体的优化、纳米光子控制的 紫外光源等领域。

6 总结与展望

分析了近五年非铅金属卤化物闪烁体材料与成像 器件研究进展。元素组成和晶体结构决定了材料中电 子的空间和能量分布,进而影响了材料性能。掺杂影 响了电子的空间和能量分布,可能提供更大的重组概 率和更多的辐射跃迁通道,对调节发光波长和提高光 产率具有重要作用。STE和离子发光是非铅金属卤

化物材料的两种典型的发光机制。但是,目前STE发 光原理还需要更深层次的揭示,例如对激发态时晶格 畸变和重构的发生过程和内在机制还不清楚。材料的 辐照稳定性也是一个重要指标,因此辐照下的晶格形 变和多种缺陷态的产生也是尚未充分研究的课题。具 有高能射线响应的稀土长余辉材料,在X射线3D成像 和信息加密领域展示了新的应用潜力,但是纳米材料 的长余辉光产率和粉体材料仍存在较大差距,深入探 索其辐射发光机制、提高长余辉纳米材料的辐射响应 与光产率仍是一个挑战。

光散射与光串扰是闪烁体材料产生能量损耗、降 低分辨率与丢失光场信息的主要原因。闪烁体器件主 要以复合薄膜、陶瓷、玻璃等形式应用于间接探测,器 件内很容易存在空隙、缺陷、晶界,导致光散射,这是引 起信号串扰及探测效率降低的重要原因。虽然通过改 善制备手段可以获得高质量闪烁体材料,但苛刻的实 验条件不可避免地会产生面积小、耗时长与高成本的 问题,因此实现大面积、高效便捷制备高质量闪烁体材 料是难点。如何解决材料的表界面问题,增大闪烁体 材料在聚合物中的分散性以及减小它们之间的折射率 差异,对于提高柔性复合膜的探测效率和分辨率具有 重要意义。此外,推进纳米材料自组装的创新方法,实 现具有一定厚度的大面积均匀膜结构,对提高闪烁体 探测器件性能也具有重要意义。同时,设计新颖的微 纳光学结构与闪烁体材料耦合,优化激子能量转移机 制、提高光收集和局部限域能力,也是提高器件性能的 重要途径。

虽然非铅金属卤化物闪烁体取得长足发展,但是 替代无机晶体成为实用化的闪烁体探测器仍面临挑 战。开发新材料、更加深入探索材料的辐射发光及能 量转移机制、优化材料的表界面性质,对于提高材料、 器件性能及促进实用化发展具有重要意义。

参考文献

- Datta A, Zhong Z, Motakef S. A new generation of direct X-ray detectors for medical and synchrotron imaging applications[J]. Scientific Reports, 2020, 10: 20097.
- [2] Kim Y C, Kim K H, Son D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 2017, 550(7674): 87-91.
- [3] Shrestha S, Fischer R, Matt G J, et al. Highperformance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers[J]. Nature Photonics, 2017, 11(7): 436-440.
- [4] Wei H T, Fang Y J, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10 (5): 333-339.
- [5] Geng X S, Chen Y A, Li Y Y, et al. Lead-free halide perovskites for direct X-ray detectors[J]. Advanced Science, 2023, 10(23): 2300256.

第 61 卷第 3 期/2024 年 2 月/激光与光电子学进展

- [6] Dun G H, Zhang H N, Qin K, et al. Wafer-scale photolithography-pixeled Pb-free perovskite X-ray detectors [J]. ACS Nano, 2022, 16(7): 10199-10208.
- [7] Chen H W, Li Y L, Zhao B, et al. Nanocrystals of metal halide perovskites and their analogues as scintillators for X -ray detection[J]. Nano Futures, 2022, 6(1): 012001.
- [8] Wang B Q, Yang X, Chen S, et al. Flexible perovskite scintillators and detectors for X-ray detection[J]. iScience, 2022, 25(12): 105593.
- [9] Chen Q S, Wu J, Ou X Y, et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561 (7721): 88-93.
- [10] Sakdinawat A, Attwood D. Nanoscale X-ray imaging[J]. Nature Photonics, 2010, 4(12): 840-848.
- [11] Jana A, Cho S, Patil S A, et al. Perovskite: scintillators, direct detectors, and X-ray imagers[J]. Materials Today, 2022, 55: 110-136.
- [12] Zhu W J, Ma W B, Su Y R, et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators[J]. Light: Science & Applications, 2020, 9: 112.
- [13] Jiang T M, Ma W B, Zhang H, et al. Highly efficient and tunable emission of lead-free manganese halides toward white light-emitting diode and X-ray scintillation applications[J]. Advanced Functional Materials, 2021, 31 (14): 2009973.
- [14] Shao W Y, Wang X, Zhang Z Z, et al. Highly efficient and flexible scintillation screen based on manganese (II) activated 2D perovskite for planar and nonplanar highresolution X-ray imaging[J]. Advanced Optical Materials, 2022, 10(6): 2102282.
- [15] Wang X, Shi H F, Ma H L, et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence[J]. Nature Photonics, 2021, 15(3): 187-192.
- [16] Zhang F, Zhou Y C, Chen Z P, et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens (adv. mater. 43/2022)[J]. Advanced Materials, 2022, 34 (43): 2204801.
- [17] Leitl M J, Krylova V A, Djurovich P I, et al. Phosphorescence versus thermally activated delayed fluorescence. controlling singlet-triplet splitting in brightly emitting and sublimable Cu(I) compounds[J]. Journal of the American Chemical Society, 2014, 136(45): 16032-16038.
- [18] Zhang Y, Lee T S, Favale J M, et al. Delayed fluorescence from a zirconium(iv) photosensitizer with ligand-to-metal charge-transfer excited states[J]. Nature Chemistry, 2020, 12(4): 345-352.
- [19] Niwa A, Kobayashi T, Nagase T, et al. Temperature dependence of photoluminescence properties in a thermally activated delayed fluorescence emitter[J]. Applied Physics Letters, 2014, 104(21): 213303.
- [20] Xu H P, Liang W Q, Zhang Z Z, et al. 2D perovskite Mn²⁺-doped Cs₂CdBr₂Cl₂ scintillator for low-dose highresolution X-ray imaging[J]. Advanced Materials, 2023, 35(26): 2300136.

第 61 卷第 3 期/2024 年 2 月/激光与光电子学进展

特邀综述

- [21] Lian L Y, Zheng M Y, Zhang W Z, et al. Efficient and reabsorption-free radioluminescence in Cs₃Cu₂I₅ nanocrystals with self-trapped excitons[J]. Advanced Science, 2020, 7 (11): 2000195.
- [22] Chen X F, Song J B, Chen X Y, et al. X-ray-activated nanosystems for theranostic applications[J]. Chemical Society Reviews, 2019, 48(11): 3073-3101.
- [23] Lusic H, Grinstaff M W. X-ray-computed tomography contrast agents[J]. Chemical Reviews, 2013, 113(3): 1641-1666.
- [24] Datta A, Fiala J, Motakef S. 2D perovskite-based high spatial resolution X-ray detectors[J]. Scientific Reports, 2021, 11: 22897.
- [25] Thompson M, Ellison S L R, Wood R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2002, 74: 835-855.
- [26] Yang B, Pan W C, Wu H D, et al. Heteroepitaxial passivation of Cs₂AgBiBr₆ wafers with suppressed ionic migration for X-ray imaging[J]. Nature Communications, 2019, 10: 1989.
- [27] Lecoq P. Development of new scintillators for medical applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 809: 130-139.
- [28] Wang D, Wei S B, Yuan X D, et al. Ultrafast imaging for uncovering laser-material interaction dynamics[J]. International Journal of Mechanical System Dynamics, 2022, 2(1): 65-81.
- [29] Wang Y J, Liu X, Im K S, et al. Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry[J]. Nature Physics, 2008, 4(4): 305-309.
- [30] Wibowo A, Sheikh M A K, Diguna L J, et al. Development and challenges in perovskite scintillators for high-resolution imaging and timing applications[J]. Communications Materials, 2023, 4: 21.
- [31] Cheng S L, Beitlerova A, Kucerkova R, et al. Zerodimensional Cs₃Cu₂I₅ perovskite single crystal as sensitive X-ray and γ-ray scintillator[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2020, 14(11): 2000374.
- [32] Cala' R, Frank I, Pagano F, et al. Sub-100-picosecond time resolution from undoped and Li-doped twodimensional perovskite scintillators[J]. Applied Physics Letters, 2022, 120(24): 241901.
- [33] Ou X Y, Qin X, Huang B L, et al. High-resolution Xray luminescence extension imaging[J]. Nature, 2021, 590(7846): 410-415.
- [34] Su B B, Jin J C, Han K, et al. Ceramic wafer scintillation screen by utilizing near-unity blue-emitting lead-free metal halide (C₈H₂₀N)₂Cu₂Br₄[J]. Advanced Functional Materials, 2023, 33(5): 2210735.
- [35] Williams R T, Wolszczak W W, Yan X H, et al. Perovskite quantum-dot-in-host for detection of ionizing radiation[J]. ACS Nano, 2020, 14(5): 5161-5169.
- [36] Yang B, Hong F, Chen J S, et al. Colloidal synthesis and charge-carrier dynamics of Cs₂AgSb₁, Bi₂X₆ (X: Br,

Cl; 0≤y≤1) double perovskite nanocrystals[J]. Angewandte Chemie (International Ed. in English), 2019, 58(8): 2278-2283.

- [37] Yang B, Chen J S, Yang S Q, et al. Lead-free silverbismuth halide double perovskite nanocrystals[J]. Angewandte Chemie International Edition, 2018, 57 (19): 5359-5363.
- [38] Locardi F, Cirignano M, Baranov D, et al. Colloidal synthesis of double perovskite Cs₂AgInCl₆ and Mn-doped Cs₂AgInCl₆ nanocrystals[J]. Journal of the American Chemical Society, 2018, 140(40): 12989-12995.
- [39] Liu S P, Yang B, Chen J S, et al. Efficient thermally activated delayed fluorescence from all-inorganic cesium zirconium halide perovskite nanocrystals[J]. Angewandte Chemie (International Ed. in English), 2020, 59(49): 21925-21929.
- [40] He T Y, Zhou Y, Wang X J, et al. High-performance copper-doped perovskite-related silver halide X-ray imaging scintillator[J]. ACS Energy Letters, 2022, 7(8): 2753-2760.
- [41] Wang Y Z, Zhao W J, Guo Y Y, et al. Efficient X-ray luminescence imaging with ultrastable and eco-friendly copper(I)-iodide cluster microcubes[J]. Light: Science & Applications, 2023, 12: 155.
- [42] Guan L Q, Shi S, Niu X W, et al. All-inorganic manganese-based CsMnCl₃ nanocrystals for X-ray imaging [J]. Advanced Science, 2022, 9(18): 2201354.
- [43] Han L L, Zhang H, Ning Y Y, et al. Environmentally stable one-dimensional copper halide based ultra-flexible composite film for low-cost X-ray imaging screens[J]. Chemical Engineering Journal, 2022, 430: 132826.
- [44] Qiu F, Lei Y T, Jin Z W. Copper-based metal halides for X-ray and photodetection[J]. Frontiers of Optoelectronics, 2022(4): 65-77.
- [45] Palazon F, El Ajjouri Y, Bolink H J. Making by grinding: mechanochemistry boosts the development of halide perovskites and other multinary metal halides[J]. Advanced Energy Materials, 2020, 10(13): 1902499.
- [46] Li N, Xu Z W, Xiao Y R, et al. Flexible, high scintillation yield Cs₃Cu₂I₅ film made of ball-milled powder for high spatial resolution X-ray imaging[J]. Advanced Optical Materials, 2022, 10(12): 2102232.
- [47] Yang H X, Chen X X, Chu Y Y, et al. A universal hydrochloric acid-assistant powder-to-powder strategy for quick and mass preparation of lead-free perovskite microcrystals[J]. Light: Science & Applications, 2023, 12: 75.
- [48] Meng H X, Chen B, Zhu W J, et al. Stable organic antimony halides with near-unity photoluminescence quantum yield for X-ray imaging[J]. Laser & Photonics Reviews, 2023, 17(7): 2201007.
- [49] Wu Y T, Han D, Chakoumakos B C, et al. Zerodimensional Cs₄EuX₆ (X = Br, I) all-inorganic perovskite single crystals for gamma-ray spectroscopy[J]. Journal of Materials Chemistry C, 2018, 6(25): 6647-6655.
- [50] Stand L, Zhuravleva M, Chakoumakos B, et al. Crystal growth and scintillation properties of Eu²⁺ doped Cs₄CaI₆

第 61 卷第 3 期/2024 年 2 月/激光与光电子学进展

特邀综述

and $Cs_4SrI_6[J]$. Journal of Crystal Growth, 2018, 486: 162-168.

- [51] Gao L, Luo X T, Sun J L, et al. Room-temperature solvent evaporation induced crystallization: a general strategy for growth of halide perovskite single crystals by applying the Le Chatelier's principle[J]. Small, 2023, 19 (49): 2303687.
- [52] Ma W, Liang D H, Qian Q K, et al. Near-unity quantum yield in zero-dimensional lead-free manganesebased halides for flexible X-ray imaging with high spatial resolution[J]. eScience, 2023, 3(2): 100089.
- [53] Han K, Sakhatskyi K, Jin J C, et al. Seed-crystalinduced cold sintering toward metal halide transparent ceramic scintillators[J]. Advanced Materials, 2022, 34 (17): 2110420.
- [54] Luo J B, Wei J H, Zhang Z Z, et al. A melt-quenched luminescent glass of an organic-inorganic manganese halide as a large-area scintillator for radiation detection[J]. Angewandte Chemie International Edition, 2023, 62(7): 202216504.
- [55] Zhang M Y, Zhu J S, Yang B, et al. Oriented-structured CsCu₂I₃ film by close-space sublimation and nanoscale seed screening for high-resolution X-ray imaging[J]. Nano Letters, 2021, 21(3): 1392-1399.
- [56] Zhao X, Jin T, Gao W R, et al. Embedding Cs₃Cu₂I₅ scintillators into anodic aluminum oxide matrix for highresolution X-ray imaging[J]. Advanced Optical Materials, 2021, 9(24): 2101194.
- [57] Wang H, Wang J X, Song X, et al. Copper organometallic iodide arrays for efficient X-ray imaging scintillators[J]. ACS Central Science, 2023, 9(4): 668-674.
- [58] Yi L Y, Hou B, Zhao H, et al. A double-tapered fibre array for pixel-dense gamma-ray imaging[J]. Nature Photonics, 2023, 17(6): 494-500.
- [59] Roques-Carmes C, Rivera N, Ghorashi A, et al. A framework for scintillation in nanophotonics[J]. Science, 2022, 375(6583): eabm9293.
- [60] Li B H, Xu Y, Zhang X L, et al. Zero-dimensional luminescent metal halide hybrids enabling bulk transparent medium as large-area X-ray scintillators[J]. Advanced

Optical Materials, 2022, 10(10): 2102793.

- [61] Cao J T, Guo Z, Zhu S, et al. Preparation of lead-free two-dimensional-layered (C₈H₁₇NH₃)₂SnBr₄ perovskite scintillators and their application in X-ray imaging[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19797-19804.
- [62] Xu L J, Lin X S, He Q Q, et al. Highly efficient ecofriendly X-ray scintillators based on an organic manganese halide[J]. Nature Communications, 2020, 11: 4329.
- [63] Lian L Y, Wang X, Zhang P, et al. Highly luminescent zero-dimensional organic copper halides for X-ray scintillation[J]. The Journal of Physical Chemistry Letters, 2021, 12(29): 6919-6926.
- [64] Mao P, Tang Y A, Wang B H, et al. Organic-inorganic hybrid cuprous halide scintillators for flexible X-ray imaging[J]. ACS Applied Materials & Interfaces, 2022, 14(19): 22295-22301.
- [65] Zhou Y, Wang X J, He T Y, et al. Large-area perovskite-related copper halide film for high-resolution flexible X-ray imaging scintillation screens[J]. ACS Energy Letters, 2022, 7(2): 844-846.
- [66] Han L L, Sun B B, Guo C, et al. Photophysics in zerodimensional potassium-doped cesium copper chloride Cs₃Cu₂Cl₅ nanosheets and its application for highperformance flexible X-ray detection[J]. Advanced Optical Materials, 2022, 10(6): 2102453.
- [67] He Q Q, Zhou C K, Xu L J, et al. Highly stable organic antimony halide crystals for X-ray scintillation[J]. ACS Materials Letters, 2020, 2(6): 633-638.
- [68] Hu Q S, Deng Z Z, Hu M C, et al. X-ray scintillation in lead-free double perovskite crystals[J]. Science China Chemistry, 2018, 61(12): 1581-1586.
- [69] Yang B, Yin L X, Niu G D, et al. Lead-free halide Rb₂CuBr₃ as sensitive X-ray scintillator[J]. Advanced Materials, 2019, 31(44): 1904711.
- [70] Yuan D S. Air-stable bulk halide single-crystal scintillator Cs₃Cu₂I₅ by melt growth: intrinsic and Tl doped with high light yield[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 38333-38340.